

Mathematics Higher level Paper 3 – discrete mathematics

Thursday 16 November 2017 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [50 marks].

×

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

-2-

1. [Maximum mark: 11]

Mathilde delivers books to five libraries, A, B, C, D and E. She starts her deliveries at library D and travels to each of the other libraries once, before returning to library D. Mathilde wishes to keep her travelling distance to a minimum.

The weighted graph H, representing the distances, measured in kilometres, between the five libraries, has the following table.

	A	В	С	D	Е
A	_	18	19	16	21
В	18	_	15	22	17
С	19	15	_	20	17
D	16	22	20	_	19
Е	21	17	17	19	_

⁽a) Draw the weighted graph H.

- (b) Starting at library D use the nearest-neighbour algorithm, to find an upper bound for Mathilde's minimum travelling distance. Indicate clearly the order in which the edges are selected.
- (c) By first removing library C, use the deleted vertex algorithm, to find a lower bound for Mathilde's minimum travelling distance.
- 2. [Maximum mark: 10]

Consider the recurrence relation

$$u_n = 5u_{n-1} - 6u_{n-2}, u_0 = 0$$
 and $u_1 = 1$.

- (a) Find an expression for u_n in terms of n.
- (b) For every prime number p > 3, show that $p \mid u_{p-1}$.

[2]

[5]

[4]

[6]

[4]

[2]

[7]

3. [Maximum mark: 11]

- (a) (i) Draw the complete bipartite graph $\kappa_{3,3}$.
 - (ii) Prove that $\kappa_{3,3}$ is not planar. [5]
- (b) A connected graph *G* has *v* vertices. Prove, using Euler's relation, that a spanning tree for *G* has v 1 edges.

Consider κ_n , a complete graph with *n* vertices, $n \ge 2$. Let *T* be a fixed spanning tree of κ_n .

(c) If an edge *E* is chosen at random from the edges of κ_n , show that the probability that *E* belongs to *T* is equal to $\frac{2}{n}$. [4]

4. [Maximum mark: 9]

Consider the system of linear congruences

$$x \equiv 2 \pmod{5}$$
$$x \equiv 5 \pmod{8}$$
$$x \equiv 1 \pmod{3}.$$

- (a) With reference to the integers 5, 8 and 3, state why the Chinese remainder theorem guarantees a unique solution modulo 120 to this system of linear congruences.
 [2]
- (b) Hence or otherwise, find the general solution to the above system of linear congruences.

5. [Maximum mark: 9]

	(a)	Con	vert the decimal number 1071 to base 12.	[3]
	(b)	Write	e the decimal number 1071 as a product of its prime factors.	[1]
The decimal number 1071 is equal to $a060$ in base b , where $a > 0$.				
	(c)	(i)	Using your answers to part (a) and (b), prove that there is only one possible value for b and state this value.	

(ii) Hence state the value of *a*. [5]